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Abstract
In this paper we report on a peculiar property of barrier transmission that
systems governed by the nonlinear Schrödinger equation share with the
linear one: for unit transmission the potential can be divided at an arbitrary
point into two sub-potentials, a left and a right one, which have exactly the
same transmission. This is a rare case of an exact property of a nonlinear
wavefunction which will be of interest, e.g., for studies of coherent transport
of Bose–Einstein condensates through mesoscopic waveguides.

PACS numbers: 03.65.−w, 03.75.Lm, 03.75.Kk

(Some figures in this article are in colour only in the electronic version)

Quantum mechanics is full of surprises, in some cases even in quite elementary situations,
that are seemingly well known from textbooks. A recent example is the following remarkable
observation for barrier penetration.

Let us consider the transmission of a one-dimensional wavefunction through a potential
V (x) with V (x) → 0 for x → ±∞. A well-known example is a rectangular potential well

V (x) =
{−V0, |x| � a

0, |x| > a
(1)

(V0 > 0) with a transmission probability [1]

|T |2(E) =
{

1 +
V 2

0

4E(E + V0)
sin2(2a

√
2m(E + V0)/h̄)

}−1

(2)

(m is the mass of the particle and E is the energy). At certain ‘resonance’ energies Eres

the potential is 100% transparent, for example at En = −V0 + (h̄2π2/8ma2)n2 > 0, n =
nmin, nmin + 1, . . ., for the rectangular well (1). Such resonances have been studied for more
general potentials, as for example symmetrical or asymmetrical double-barrier structures in
connection with resonant-tunneling, where they are denoted as unit resonances (see, e.g., [2]
and references therein).
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Chabanov and Zakhariev [3] discovered that, at such a resonant energy, the potential
scattering shows a surprising symmetry: dividing V (x) into two distinct parts at some arbitrary
point x ′ defining a ‘left’ and a ‘right’ potential

VL(x) =
{
V (x), x � x ′,

0, x > x ′,
VR(x) =

{
0, x < x ′,

V (x), x � x ′,
(3)

the transmission probabilities |TL|2 for VL and |TR|2 for VR are equal at the resonance energy,

|TL|2(Eres) = |TR|2(Eres), (4)

despite the fact that the left and right potentials can be very different. This is shown
easily using the transfer matrix M connecting the amplitudes of the wavefunction on the
left-hand side, ψ(x) = A exp(ikx) + B exp(−ikx), with those on the right-hand side,
ψ(x) = C exp(ikx) + D exp(−ikx) (the limit |x| → ∞ is understood for a potential not
vanishing outside a finite range):(

C

D

)
= M

(
A

B

)
=

(
α β

β∗ α∗

) (
A

B

)
, (5)

where the unit determinant det M = |α|2 − |β|2 = 1 guarantees that the reflection probability
|R|2 = |β/α|2 and the transmission probability |T |2 = 1/|α|2 sum to unity (see, e.g., [1]). If
the potential is cut at x ′ according to (3), the total transfer matrix can be expressed as a product
of the transfer matrices MR and ML of the right and left potentials, respectively: M = MRML.
For unit transmission we have |α| = 1 and

β = αRβL + βRα∗
L = 0 (6)

which implies βR/αR = −β∗
L/αL and hence equal reflection probabilities of VR and VL. This

property, which can also be extended to more general situations, offers an intuitive approach
to the design of potentials with desired transmission properties (see [3] and references therein
for more details).

In this paper we report an even more puzzling fact, namely that these properties remain
valid for the nonlinear Schrödinger equation (NLSE)

h̄2

2m
ψ ′′ + (µ − V )ψ − g|ψ |2ψ = 0. (7)

The nonlinearity destroys the superposition principle in linear quantum mechanics and we
therefore cannot base our proof on matrix techniques as above. The NLSE (7), also known
as Gross–Pitaevskii equation, attracted much interest in recent years because it describes the
dynamics of Bose–Einstein condensates in a mean-field approximation at low temperature
(see, e.g., [4]). Note that the chemical potential µ takes over the role of the energy E. We
furthermore note that also the nonlinearity g may be x dependent.

Transport properties of cold atomic gases in designed mesoscopic waveguides are of
recent interest [5]. Here in particular barrier transmission of the nonlinear waves has been
studied in a number of papers [5–8] that assume an experimental setup in which matter
waves from a large reservoir of condensed atoms at chemical potential µ are injected into a
one-dimensional waveguide in which the condensate can propagate. In these articles it was
shown that the results obtained from the stationary NLSE (7) are in excellent agreement with
numerical solutions of the time-dependent NLSE

ih̄ψ̇(x, t) = − h̄2

2m
ψ ′′(x, t) + V (x)ψ(x, t) + g|ψ(x, t)|2ψ(x, t) + f0 exp(−iµt/h̄)δ(x − x0),

(8)
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where the source term f0 exp(−iµt/h̄)δ(x − x0) located at x = x0 emits monochromatic
matter waves at chemical potential µ and thus simulates the coupling to a reservoir. The
barrier potential V (x) is assumed to be zero for x � x0. As discussed in these articles,
the definition of a transmission probability is not unambiguous, because of the implicit
dependence on the scattering wavefunction |ψ(x)|2. Different prescriptions assuming either
a fixed source strength f0 or a fixed incoming current can be formulated which differ in a
strongly nonlinear situation. No ambiguity appears, of course, if the nonlinearity vanishes in
the region far away from the scattering potential. Note that for unit transmission the differences
between fixed output or input conditions as well as the definition ambiguities disappear. See
[5, 8] for more details.

A fixed output boundary condition

ψ(x) → C exp(ikx), ψ ′(x) → ikC exp(ikx) for x → +∞ (9)

with k =
√

2m(µ − g|C|2)/h̄ determines the wavefunction ψ(x) and its derivative ψ ′(x) in
the region −∞ � x � ∞ uniquely [9]. This provides a recipe to define an effective incoming
amplitude A in the upstream region and a transmission coefficient

|T |2 = (k/kA)|C/A|2 with kA =
√

2m(µ − g|A|2)/h̄. (10)

For the fixed output problem, the transmission coefficient is a unique function of the chemical
potential µ. If the problem is formulated as a fixed input problem, one observes a bending
over of the transmission spectra and an interaction-induced bistability for strong nonlinearity
where the transmission coefficient is no longer a unique function of µ. In addition, it was
found that the points of unit transmission, the resonances µres, survive in the nonlinear case
g �= 0, of course shifted to different positions depending on g. In the following examples, we
will use transmission coefficients derived from the fixed output condition (9).

If the potential V (x) is 100% transparent at the chemical potential µ = µres, the solution
in the far upstream region is given by

ψ(x) → C exp(ikx + iϕ), ψ ′(x) → ikC exp(ikx + iϕ) for x → −∞, (11)

where ϕ is a real-valued phase.
Now we define a second fixed output problem given by the NLSE

h̄2

2m
χ ′′ + (µ − V )χ − g|χ |2χ = 0 (12)

with the initial conditions

χ(x) → C∗ exp(−ikx − iϕ), χ ′(x) → −ikC∗ exp(−ikx − iϕ) (13)

for x → −∞, which corresponds to scattering through V (x) from the opposite side of the
well. Noting that, for real values of µ, the complex conjugate of a solution also solves the
NLSE, we find immediately that the solution of (12) and (13) is given by

χ(x) = ψ∗(x), χ ′(x) = ψ ′∗(x), (14)

and in particular

χ(x) = C∗ exp(−ikx), χ ′(x) = −ikC∗ exp(−ikx) for x → +∞. (15)

This means that the barrier potential V (x) is also transparent for waves with chemical potential
µ coming in from the opposite side of the barrier even if the potential is asymmetrical. Note
that this is not satisfied automatically, because the equality of the left-to-right and right-to-left
transmission probabilities valid in the linear case is not guaranteed for the NLSE, at least to
the knowledge of the authors.
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Now we divide the barrier potential V (x) as given in equation (3) and obtain two new
fixed output problems: the first one is determined by the NLSE

h̄2

2m
ψ ′′

R + (µ − VR)ψR − g|ψR|2ψR = 0 (16)

with the initial conditions

ψR(x) → C exp(ikx), ψ ′
R(x) → ikC exp(ikx) for x → +∞, (17)

which corresponds to tunneling through the potential VR(x) from the left-hand side to the
right-hand side of the barrier. The second one is determined by the NLSE

h̄2

2m
χ ′′

L + (µ − VL)χL − g|χL|2χL = 0, (18)

with the initial conditions

χL(x) → C∗ exp(−ikx − iϕ), χ ′
L → −ikC∗ exp(−ikx − iϕ) (19)

for x → −∞, which corresponds to tunneling through the potential VL(x) from the right-hand
side to the left-hand side of the barrier.

From equation (14) we obtain at the cutting position x ′

χL(x ′) = ψ∗
R(x ′), χ ′

L(x ′) = ψ ′∗
R (x ′). (20)

Since the wavefunctions in the respective potential-free regions are uniquely determined by
the values of the wavefunction and its derivative at x ′ it follows together with the initial
conditions (17) and (19) that the asymptotic wavefunction χL(x) for x → ±∞ is equal to the
asymptotic wavefunction ψ∗

R(x) for x → ∓∞ up to an irrelevant phase factor exp(iϕ). Thus
the respective transmission coefficients coincide no matter which particular definition of the
transmission coefficient is used.

For illustrative purposes we explicitly demonstrate in the following the equality of the two
transmission coefficients for the case that a fixed source strength f0 is assumed in equation
(8). In section II.A of [8], it was shown that the source strength is connected with the effective
incoming amplitude AR via f0 = i h̄2

m
kRAR with kR =

√
2m(µ − g|AR|2)h̄. By considering

the stationary solutions of equation (8) it was further shown that AR is determined by the
wavefunction and its derivative at the position x0 of the source. Choosing x0 = x ′ we obtain
from equation (12) in [8]

2ikRAR = ψ ′
R(x ′) + ik′ψR(x ′) (21)

with k′ =
√

2m(µ − g|ψR(x ′)|2)h̄ =
√

2m(µ − g|χL(x ′)|2)h̄. Since χL(x) corresponds
to scattering from the opposite direction the respective equation for the effective incoming
amplitude AL differs by a sign. With the definition kL =

√
2m(µ − g|AL|2)h̄ we thus arrive

at

2ikLAL = χ ′
L(x ′) − ik′χL(x ′) = (ψ ′

R(x ′) + ik′ψR(x ′))∗ = (2ikRAR)∗ (22)

using (20) and (21). Consequently, we obtain |AL|2 = |AR|2 and kL = kR so that the respective
transmission coefficients

|TL|2 = k|C|2
kL|AL|2 = k|C|2

kR|AR|2 = |TR|2 (23)

coincide. More precisely, the left-to-right transmission of VL is equal to the right-to-left
transmission of VR (compare the remark above).

As an illustration, we present results based on a numerical solution of the NLSE for
two cases. Figure 1 shows the transmission probability for a rectangular well (1) with
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Figure 1. Transmission coefficient (-.-.) of the NLSE for the rectangular potential well (1)
(parameters m = h̄ = 1, depth V0 = 50, width 2a = 40 and attractive nonlinearity g = −1).
Also shown are the transmission probabilities for the left (width 10, - - -) and right potential (width
30,−) obtained from dividing V (x) into two parts. These two probabilities are equal at the
resonance at µres where the potential V (x) is transparent.
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Figure 2. Same as figure 1, however for the double-barrier potential (24).

m = h̄ = 1, V0 = 50, a = 20 and an attractive nonlinearity g = −1 acting along the whole
x-axis. The outgoing boundary conditions are chosen as C = 1. We observe unit transmission,
|T |2 = 1, at the resonance µres ≈ 2.135.

We now divide the rectangular well with width 2a = 40 at the value x ′ = −10 into two
separate parts and calculate the transmission coefficient of each of these rectangular wells VL

(width 10) and VR (width 30) separately. Their transmission curves displayed in figure 1 cross
at the chemical potential µres, exactly as predicted.

As a second example we choose the double-Gaussian barrier

V (x) = V0[exp(−(x + b)2/α2) + exp(−(x − b)2/α2)] (24)

with parameters V0 = 1, b = 7.35, α = b/5 and a nonlinearity of g = 0.005 studied in [6, 8],
where the apparently small value of g nevertheless causes a strong deviation of the nonlinear
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resonance curve from the linear one. In figure 2 we observe full transparency at µ ≈ 0.7632,
i.e. below the potential maxima. In addition the figure shows the transmission curves for the
left and right potentials, where the potential is divided by x = −8.0. Again the left and right
transmission coefficients are equal at the point of transparency.

In conclusion, we have shown that the interesting property of linear quantum barrier
penetration at unit transmission, the equality of transmission through the arbitrarily divided
sub-potentials, can be carried over to the nonlinear case which is much less understood. In
addition of being of interest in its own right, this remarkable fact may provide an intuitive way
to treat transport in nonlinear quantum systems, as for example the Bose–Einstein condensates
in the mean-field approximation.
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